Scientific Reports (Jul 2023)

AFM methods for studying the morphology and micromechanical properties of the membrane of human buccal epithelium cell

  • N. A. Torkhov,
  • V. A. Buchelnikova,
  • A. A. Mosunov,
  • I. V. Ivonin

DOI
https://doi.org/10.1038/s41598-023-33881-x
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Using AFM methods in air under normal conditions in a wide range of local force effects ( $${F}_{const}$$ F const 21 nN) stimulation ( $${F}_{const}$$ F const ) is a non-trivial selective process and exhibits a correspondingly elastic ( $$K=$$ K = 67.4 N/m), active ( $$K=$$ K = 80.2 N/m) and passive ( $$K=$$ K = 84.5 N/m) responses. $$K=K({F}_{const})$$ K = K ( F const ) and $$E=E({F}_{const})$$ E = E ( F const ) depend on $${F}_{const}$$ F const . Having undergone slight plastic deformations $${\Delta h}_{stiff}$$ Δ h stiff < 300 nm, the membrane is capable of restoring its shape. We mapped ( $$E=E(x;y)$$ E = E ( x ; y ) , $${D}_{f}$$ D f = 2.56; $${\Delta h}_{dfrm}={\Delta h}_{dfrm}(x;y)$$ Δ h dfrm = Δ h dfrm ( x ; y ) , $${D}_{f}$$ D f = 2.68; $${\Delta h}_{stiff}={\Delta h}_{stiff}(x;y)$$ Δ h stiff = Δ h stiff ( x ; y ) , $${D}_{f }$$ D f = 2.42, $$A=A\left(x;y\right)$$ A = A x ; y and $${F}_{adh}={F}_{adh}(x;y)$$ F adh = F adh ( x ; y ) ) indicating its complex cavernous structure.