Crystals (May 2018)
Coordination Behavior of Bis-Imidazole and Various Carboxylate Ligands towards Zn(II) and Cd(II) Ions: Synthesis, Structure, and Photoluminescence Study
Abstract
Four coordination polymers (CPs) based on bis-imidazole ligands (1,2-bimb and 1,2-bmimb), namely, {[Zn(1,2-bimb)(2,5-dtpa)] H2O}n (1), {[Cd2(1,2-bimb)2(5-hipa)2] 2H2O} (2), {Zn2(1,2-bimb)(L)(CH3COO) DMF·2H2O}n (3) and {Cd(1,2-bmimb)(3-npa)}n (4), have been synthesized by solvothermal reactions (1,2-bimb = 1,2-bis((1H-imidazol-1-yl)methyl)benzene, 1,2-bmimb = 1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 2,5-H2dtpa = 2,5-diaminoterephthalic acid, 5-H2hipa = 5-hydroxyisophthalic acid, H3L= 3,3′,3′′-(2,4,6-trioxo-1,3,5-triazinane-1,3,5-triyl)tripropanoic acid, 3-H2npa = 3-nitrophthalic acid) and structurally verified by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD), elemental analyses and infrared spectroscopy (IR). Complex 1 and 2 show a dinuclear 2D layered structure. Complex 4 exhibits a two-dimensional network consisting of [Cd(3-npa)]n and [Cd(1,2-bmimb)]n chains. Both 1,2 and 4 display a 4-connected sql topology sheet, which can be further expanded into a 3D supramolecular network through π···π interaction between layers. Complex 3 features a 3D (3,6)-connected {42·6}·{44·610·8}-3,6T24 topology structure consisting of 2D bilayers. Structural comparison reveals that it is not only the substituents at different positions of ancillary ligands and the primary bis(imidazole) linkers that play crucial roles in the control of the final structures. Besides, the photoluminescence properties of 1–4 have been investigated in the solid state at room temperature.
Keywords