Nature Communications (Oct 2019)

Mapping the global design space of nanophotonic components using machine learning pattern recognition

  • Daniele Melati,
  • Yuri Grinberg,
  • Mohsen Kamandar Dezfouli,
  • Siegfried Janz,
  • Pavel Cheben,
  • Jens H. Schmid,
  • Alejandro Sánchez-Postigo,
  • Dan-Xia Xu

DOI
https://doi.org/10.1038/s41467-019-12698-1
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 9

Abstract

Read online

Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.