Arthroscopy, Sports Medicine, and Rehabilitation (Oct 2023)

Validated Wearable Device Shows Acute Postoperative Changes in Sleep Patterns Consistent With Patient-Reported Outcomes and Progressive Decreases in Device Compliance After Shoulder Surgery

  • Pranav V. Gadangi, B.S.,
  • Bradley S. Lambert, Ph.D.,
  • Haley Goble, M.H.A., C.C.R.C.,
  • Joshua D. Harris, M.D.,
  • Patrick C. McCulloch, M.D.

Journal volume & issue
Vol. 5, no. 5
p. 100783

Abstract

Read online

Purpose: To assess the utility of a validated wearable device (VWD) in examining preoperative and postoperative sleep patterns and how these data compare to patient-reported outcomes (PROs) after rotator cuff repair (RCR) or total shoulder arthroplasty (TSA). Methods: Male and female adult patients undergoing either RCR or TSA were followed up from 34 days preoperatively to 6 weeks postoperatively. Sleep metrics were collected using a VWD in an unsupervised setting. PROs were assessed using the following validated outcome measures: Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function questionnaire; American Shoulder and Elbow Surgeons self-evaluation questionnaire; visual analog scale assessing pain; and Disabilities of the Arm, Shoulder and Hand questionnaire. Data were analyzed preoperatively and at 2-week intervals postoperatively with χ2 analysis to evaluate device compliance. Sleep metrics and PROs were evaluated at each interval relative to preoperative values within each surgery type with an analysis of variance repeated on time point. The relation between sleep metrics and PROs was assessed with correlation analysis. Results: A total of 57 patients were included, 37 in the RCR group and 20 in the TSA group. The rate of device compliance in the RCR group decreased from 84% at surgery to 46% by 6 weeks postoperatively (P < .001). Similarly, the rate of device compliance in the TSA group decreased from 81% to 52% (P < .001). Deep sleep decreased in RCR patients at 2 to 4 weeks (decrease by 10.99 ± 3.96 minutes, P = .021) and 4 to 6 weeks postoperatively (decrease by 13.37 ± 4.08 minutes, P = .008). TSA patients showed decreased deep sleep at 0 to 2 weeks postoperatively (decrease by 12.91 ± 5.62 minutes, P = .045) and increased rapid eye movement sleep at 2 to 4 weeks postoperatively (increase by 26.91 ± 10.70 minutes, P = .031). Rapid eye movement sleep in the RCR group and total sleep in the TSA group were positively correlated with more favorable PROs (P < .05). Conclusions: VWDs allow for monitoring components of sleep that offer insight into potential targets for improving postoperative fatigue, pain, and overall recovery after shoulder surgery. However, population demographic factors and ease of device use are barriers to optimized patient compliance during data collection. Level of Evidence: Level IV, diagnostic case series.