Physical Review X (Jul 2017)

High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy

  • F. Scarponi,
  • S. Mattana,
  • S. Corezzi,
  • S. Caponi,
  • L. Comez,
  • P. Sassi,
  • A. Morresi,
  • M. Paolantoni,
  • L. Urbanelli,
  • C. Emiliani,
  • L. Roscini,
  • L. Corte,
  • G. Cardinali,
  • F. Palombo,
  • J. R. Sandercock,
  • D. Fioretto

DOI
https://doi.org/10.1103/PhysRevX.7.031015
Journal volume & issue
Vol. 7, no. 3
p. 031015

Abstract

Read online Read online

Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical, and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matched approach to obtain complementary information from a sample. Here, we demonstrate a new concept of fully scanning multimodal microspectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150-dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and spatial resolution on a subcellular scale. We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechanochemical mapping of highly scattering biological samples.