Fungal Biology and Biotechnology (Nov 2024)
CRISPR-Cas9-mediated enhancement of Beauveria bassiana virulence with overproduction of oosporein
Abstract
Abstract Biocontrol agents play a pivotal role in managing pests and contribute to sustainable agriculture. Recent advancements in genetic engineering can facilitate the development of entomopathogenic fungi with desired traits to enhance biocontrol efficacy. In this study, a CRISPR-Cas9 ribonucleoprotein system was utilized to genetically improve the virulence of Beauveria bassiana, a broad-spectrum insect pathogen used in biocontrol of arthropod pests worldwide. CRISPR-Cas9-based disruption of the transcription factor-encoding gene Bbsmr1 led to derepression of the oosporein biosynthetic gene cluster resulting in overproduction of the red-pigmented dibenzoquinone oosporein involved in host immune evasion, thus increasing fungal virulence. Mutants defective for Bbsmr1 displayed a remarkable enhanced insecticidal activity by reducing lethal times and concentrations, while concomitantly presenting negligible or minor pleiotropic effects. In addition, these mutants displayed faster germination on the insect cuticle which correlated with higher density of free-floating blastospores in the hemolymph and accelerated mortality of the host. These findings emphasize the utility of genetic engineering in developing enhanced fungal biocontrol agents with customized phenotypic traits, and provide an efficient and versatile genetic transformation tool for application in other beneficial entomopathogenic fungi.
Keywords