Plants (May 2023)

Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (<i>Punica granatum</i> L.) Peel Extract against Tobacco Mosaic Virus

  • Abdulaziz A. Al-Askar,
  • Dalia G. Aseel,
  • Hamada El-Gendi,
  • Sherien Sobhy,
  • Marwa A. Samy,
  • Esraa Hamdy,
  • Sarah El-Messeiry,
  • Said I. Behiry,
  • Toufic Elbeaino,
  • Ahmed Abdelkhalek

DOI
https://doi.org/10.3390/plants12112103
Journal volume & issue
Vol. 12, no. 11
p. 2103

Abstract

Read online

Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3–3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants.

Keywords