Stem Cell Research & Therapy (Feb 2024)

Oxidized SOD1 accelerates cellular senescence in neural stem cells

  • Teng Guan,
  • Ying Guo,
  • Ting Zhou,
  • Qiang Yu,
  • Jingyi Sun,
  • Baoliang Sun,
  • Guohui Zhang,
  • Jiming Kong

DOI
https://doi.org/10.1186/s13287-024-03669-5
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Neural stem cells (NSCs), especially human NSCs, undergo cellular senescence characterized by an irreversible proliferation arrest and loss of stemness after prolonged culture. While compelling correlative data have been generated to support the oxidative stress theory as one of the primary determinants of cellular senescence of NSCs, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and cellular senescence of NSCs has yet to be firmly established. Human SOD1 (hSOD1) is susceptible to oxidation. Once oxidized, it undergoes aberrant misfolding and gains toxic properties associated with age-related neurodegenerative disorders. The present study aims to examine the role of oxidized hSOD1 in the senescence of NSCs. Methods NSCs prepared from transgenic mice expressing the wild-type hSOD1 gene were maintained in culture through repeated passages. Extracellular vesicles (EVs) were isolated from culture media at each passage. To selectively knock down oxidized SOD1 in NSCs and EVs, we used a peptide-directed chaperone-mediated protein degradation system named CT4 that we developed recently. Results In NSCs expressing the hSOD1 from passage 5, we detected a significant increase of oxidized hSOD1 and an increased expression of biomarkers of cellular senescence, including upregulation of P53 and SA-β-Gal and cytoplasmic translocation of HMGB1. The removal of oxidized SOD1 remarkably increased the proliferation and stemness of the NSCs. Meanwhile, EVs derived from senescent NSCs carrying the wild-type hSOD1 contained high levels of oxidized hSOD1, which could accelerate the senescence of young NSCs and induce the death of cultured neurons. The removal of oxidized hSOD1 from the EVs abolished their senescence-inducing activity. Blocking oxidized SOD1 on EVs with the SOD1 binding domain of the CT4 peptide mitigated its toxicity to neurons. Conclusion Oxidized hSOD1 is a causal factor in the cellular senescence of NSCs. The removal of oxidized hSOD1 is a strategy to rejuvenate NSCs and to improve the quality of EVs derived from senescent cells.