The ABI3-ERF1 module mediates ABA-auxin crosstalk to regulate lateral root emergence
Jing Zhang,
Pingxia Zhao,
Siyan Chen,
Liangqi Sun,
Jieli Mao,
Shutang Tan,
Chengbin Xiang
Affiliations
Jing Zhang
Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
Pingxia Zhao
Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China; Corresponding author
Siyan Chen
Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
Liangqi Sun
Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
Jieli Mao
Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
Shutang Tan
Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
Chengbin Xiang
Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China; Corresponding author
Summary: Abscisic acid (ABA) is involved in lateral root (LR) development, but how ABA signaling interacts with auxin signaling to regulate LR formation is not well understood. Here, we report that ABA-responsive ERF1 mediates the crosstalk between ABA and auxin signaling to regulate Arabidopsis LR emergence. ABI3 is a negative factor in LR emergence and transcriptionally activates ERF1 by binding to its promoter, and reciprocally, ERF1 activates ABI3, which forms a regulatory loop that enables rapid signal amplification. Notably, ABI3 physically interacts with ERF1, reducing the cis element-binding activities of both ERF1 and ABI3 and thus attenuating the expression of ERF1-/ABI3-regulated genes involved in LR emergence and ABA signaling, such as PIN1, AUX1, ARF7, and ABI5, which may provide a molecular rheostat to avoid overamplification of auxin and ABA signaling. Taken together, our findings identify the role of the ABI3-ERF1 module in mediating crosstalk between ABA and auxin signaling in LR emergence.