Sensors (Jul 2024)
Overview of Radar Alignment Methods and Analysis of Radar Misalignment’s Impact on Active Safety and Autonomous Systems
Abstract
The rapid development of active safety systems in the automotive industry and research in autonomous driving requires reliable, high-precision sensors that provide rich information about the surrounding environment and the behaviour of other road users. In practice, there is always some non-zero mounting misalignment, i.e., angular inaccuracy in a sensor’s mounting on a vehicle. It is essential to accurately estimate and compensate for this misalignment further programmatically (in software). In the case of radars, imprecise mounting may result in incorrect/inaccurate target information, problems with the tracking algorithm, or a decrease in the power reflected from the target. Sensor misalignment should be mitigated in two ways: through the correction of an inaccurate alignment angle via the estimated value of the misalignment angle or alerting other components of the system of potential sensor degradation if the misalignment is beyond the operational range. This work analyses misalignment’s influences on radar sensors and other system components. In the mathematically proven example of a vertically misaligned radar, pedestrian detectability dropped to one-third of the maximum range. In addition, mathematically derived heading estimation errors demonstrate the impact on data association in data fusion. The simulation results presented show that the angle of misalignment exponentially increases the risk of false track splitting. Additionally, the paper presents a comprehensive review of radar alignment techniques, mostly found in the patent literature, and implements a baseline algorithm, along with suggested key performance indicators (KPIs) to facilitate comparisons for other researchers.
Keywords