Encyclopedia (Sep 2021)

Spatial Hurst–Kolmogorov Clustering

  • Panayiotis Dimitriadis,
  • Theano Iliopoulou,
  • G.-Fivos Sargentis,
  • Demetris Koutsoyiannis

DOI
https://doi.org/10.3390/encyclopedia1040077
Journal volume & issue
Vol. 1, no. 4
pp. 1010 – 1025

Abstract

Read online

The stochastic analysis in the scale domain (instead of the traditional lag or frequency domains) is introduced as a robust means to identify, model and simulate the Hurst–Kolmogorov (HK) dynamics, ranging from small (fractal) to large scales exhibiting the clustering behavior (else known as the Hurst phenomenon or long-range dependence). The HK clustering is an attribute of a multidimensional (1D, 2D, etc.) spatio-temporal stationary stochastic process with an arbitrary marginal distribution function, and a fractal behavior on small spatio-temporal scales of the dependence structure and a power-type on large scales, yielding a high probability of low- or high-magnitude events to group together in space and time. This behavior is preferably analyzed through the second-order statistics, and in the scale domain, by the stochastic metric of the climacogram, i.e., the variance of the averaged spatio-temporal process vs. spatio-temporal scale.

Keywords