Chemical and Biological Technologies in Agriculture (Mar 2023)
Chromatography analysis, in light of vitro antioxidant, antidiabetic, antiobesity, anti-inflammatory, antimicrobial, anticancer, and three-dimensional cancer spheroids’ formation blocking activities of Laurus nobilis aromatic oil from Palestine
Abstract
Abstract Laurus nobilis (LN) has been used throughout the years as a food flavoring and in traditional medicine. The LN leaves have various biological activities, such as antioxidant, wound healing, antibacterial, analgesic, and anti-inflammatory activities. However, oxidative stress, cancer, diabetes, microbial infections, and inflammatory diseases are closely linked. The objective of this research is to characterize Laurus nobilis (LN) aromatic oil (AO) and evaluate its antioxidant, antidiabetic, antiobesity, antimicrobial, and antimutagenic bioactivities. The AO constituents were characterized using gas chromatography–mass spectrometry (GC–MS). The antimicrobial activity was performed using a microdilution assay against six common microbial species. Free radicals, a porcine pancreatic lipase, α-amylase, and α-glucosidase inhibitory assays were conducted utilizing reference biomedical methods. The cytotoxic effect of LNAO was established on a variety of cancer and normal cell lines using the MTS assay. The anti-inflammatory activity of LNAO was evaluated using the Cayman COX activity kit. The results indicate about 99% of the total oil is composed of 36 compounds, the characterized AO metabolites showed content of many oxygenated terpenoids with 1,8-Cineole and Terpinyl acetate as a major component with a percentage of (40.39 and 15.07, respectively. The plant AO showed potent antioxidant activity (IC50 = 2.2 ± 1.38) and has moderate anti-amylase (IC50 = 60.25 ± 1.25), anti-glucosidase (IC50 = 131.82 ± 0.1), and antilipase (IC50 = 83.17 ± 0.06) activities. Moreover, LNAO showed potent antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia , Proteus vulgaris (MICs = 1.56 µg/mL), methicillin-resistant Staphylococcus aureus (MRSA) (MIC = 3.125 µg/mL) and Candida albicans (MIC = 0.195 µg/mL). The cytotoxicity results demonstrated that at a concentration of 1 mg/mL, LNAO has potent breast cancer (MCF-7), and hepatocellular carcinoma (Hep 3B) cancer cells inhibitory activities of 98% and 95%, respectively. Importantly, we are the first to show that LNAO significantly hinders hepatocellular carcinoma spheroids’ formation capacity in a 3D model. These results show that LNAO is a promising natural source with powerful antioxidant, antidiabetic, anticancer, and antimicrobial activities that could be exploited in the future to treat a variety of diseases. Graphical Abstract
Keywords