Frontiers in Plant Science (Jul 2021)

Genome-Wide Association Study of Vascular Bundle-Related Traits in Maize Stalk

  • Yunxiao Zheng,
  • Peng Hou,
  • Liying Zhu,
  • Weibin Song,
  • Han Liu,
  • Han Liu,
  • Yaqun Huang,
  • Hong Wang,
  • Jinjie Guo

DOI
https://doi.org/10.3389/fpls.2021.699486
Journal volume & issue
Vol. 12

Abstract

Read online

The vascular bundle plays an important role in nutrient transportation in plants and exerts great influence on crop yield. Maize is widely used for food, feed, and fuel, producing the largest yield in the world. However, genes and molecular mechanism controlling vascular bundle-related traits in maize have largely remained undiscovered. In this study, a natural population containing 248 diverse maize inbred lines genotyped with high-throughput SNP markers was used for genome-wide association study. The results showed that broad variations existed for the vascular bundle-related traits which are subject to genetic structure and it was suitable for association analysis. In this study, we identified 15, 13, 2, 1, and 5 SNPs significantly associated with number of small vascular bundle, number of large vascular bundle, average area of single small vascular bundle, average area of single large vascular bundle, and cross-sectional area, respectively. The 210 candidate genes in the confidence interval can be classified into ten biological processes, three cellular components, and eight molecular functions. As for the Kyoto Encyclopedia of Genes and Genomes analysis of the candidate genes, a total of six pathways were identified. Finally, we found five genes related to vascular development, three genes related to cell wall, and two genes related to the mechanical strength of the stalk. Our results provide the further understanding of the genetic foundation of vascular bundle-related traits in maize stalk.

Keywords