Energies (Jan 2023)

Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles

  • Vishnu P. Sidharthan,
  • Yashwant Kashyap,
  • Panagiotis Kosmopoulos

DOI
https://doi.org/10.3390/en16031214
Journal volume & issue
Vol. 16, no. 3
p. 1214

Abstract

Read online

The energy utilization of the transportation industry is increasing tremendously. The battery is one of the primary energy sources for a green and clean mode of transportation, but variations in driving profiles (NYCC, Artemis Urban, WLTP class-1) and higher C-rates affect the battery performance and lifespan of battery electric vehicles (BEVs). Hence, as a singular power source, batteries have difficulty in tackling these issues in BEVs, highlighting the significance of hybrid-source electric vehicles (HSEVs). The supercapacitor (SC) and photovoltaic panels (PVs) are the auxiliary power sources coupled with the battery in the proposed hybrid electric three-wheeler (3W). However, energy management strategies (EMS) are critical to ensure optimal and safe power allocation in HSEVs. A novel adaptive Intelligent Hybrid Source Energy Management Strategy (IHSEMS) is proposed to perform energy management in hybrid sources. The IHSEMS optimizes the power sources using an absolute energy-sharing algorithm to meet the required motor power demand using the fuzzy logic controller. Techno-economic assessment wass conducted to analyze the effectiveness of the IHSEMS. Based on the comprehensive discussion, the proposed strategy reduces peak battery power by 50.20% compared to BEVs. It also reduces the battery capacity loss by 48.1%, 44%, and 24%, and reduces total operation cost by 60%, 43.9%, and 23.68% compared with standard BEVs, state machine control (SMC), and frequency decoupling strategy (FDS), respectively.

Keywords