Machines (Feb 2023)
Gear Crack Detection Based on Vibration Analysis Techniques and Statistical Process Control Charts (SPCC)
Abstract
Vibration condition monitoring is a non-devastating technique that can be performed to detect tooth cracks propagating in gear systems. This paper proposes to apply a new methodology using time-domain analysis, frequency-domain analysis, and statistical process control charts (SPCC) for gear crack detection of a 10 DOF dynamic model of spiral bevel gear system (SBGS). The gear mesh stiffness effect used in the model has been studied analytically for different levels of crack faults. Adding Gaussian white noise is discussed as the first step to simulating the initial modeling signals of real-world conditions. Second, time-domain signal analysis was performed to identify periodic vibration pulses as failure components and calculate the statistical standard deviation (STD) feature as a fault-sensitive feature. Third, a fast Fourier transform (FFT) to time signals of the variable gear mesh stiffness was applied to determine the gear mesh frequency and sidebands to detect tooth cracks. Fourth, the SPCC was designed using the Shewhart X-bar chart and an exponentially weighted moving average (EWMA) chart based on the STD feature of the healthy gears. Finally, in the testing stage, the control charts are carried out with simulation signals under faulty conditions to detect the different levels of cracks. The results showed that the EWMA chart outperformed the time domain analysis, frequency domain analysis, and Shewhart X-bar chart in detecting all levels of cracks at an early stage.
Keywords