Remote Sensing (Mar 2022)
A Block Shuffle Network with Superpixel Optimization for Landsat Image Semantic Segmentation
Abstract
In recent years, with the development of deep learning in remotely sensed big data, semantic segmentation has been widely used in large-scale landcover classification. Landsat imagery has the advantages of wide coverage, easy acquisition, and good quality. However, there are two significant challenges for the semantic segmentation of mid-resolution remote sensing images: the insufficient feature extraction capability of deep convolutional neural network (DCNN); low edge contour accuracy. In this paper, we propose a block shuffle module to enhance the feature extraction capability of DCNN, a differentiable superpixel branch to optimize the feature of small objects and the accuracy of edge contours, and a self-boosting method to fuse semantic information and edge contour information to further optimize the fine-grained edge contour. We label three sets of Landsat landcover classification datasets, and achieved an overall accuracy of 86.3%, 83.2%, and 73.4% on the three datasets, respectively. Compared with other mainstream semantic segmentation networks, our proposed block shuffle network achieves state-of-the-art performance, and has good generalization ability.
Keywords