Energies (Jun 2019)

Tip-Bed Velocity and Scour Depth of Horizontal-Axis Tidal Turbine with Consideration of Tip Clearance

  • Tianming Zhang,
  • Wei Haur Lam,
  • Yonggang Cui,
  • Jinxin Jiang,
  • Chong Sun,
  • Jianhua Guo,
  • Yanbo Ma,
  • Shuguang Wang,
  • Su Shiung Lam,
  • Gerard Hamill

DOI
https://doi.org/10.3390/en12122450
Journal volume & issue
Vol. 12, no. 12
p. 2450

Abstract

Read online

The scouring by a tidal turbine is investigated by using a joint theoretical and experimental approach in this work. The existence of a turbine obstructs a tidal flow to divert the flow passing through the narrow channel in between the blades and seabed. Flow suppression is the main cause behind inducing tidal turbine scouring, and its accelerated velocity is being termed as tip-bed velocity (Vtb). A theoretical equation is currently proposed to predict the tip-bed velocity based on the axial momentum theory and the conservation of mass. The proposed tip-bed velocity equation is a function of four variables of rotor radius (r), tip-bed clearance (C), efflux velocity (V0) and free flow velocity (V∞), and a constant of mass flow coefficient (Cm) of 0.25. An experimental apparatus was built to conduct the scour experiments. The results provide a better understanding of the scour mechanism of the horizontal axis tidal turbine-induced scour. The experimental results show that the scour depth is inversely proportional to tip-bed clearance. Turbine coefficient (Kt) is proposed based on the relationship between the tip-bed velocity and the experimental tidal turbine scour depth. Inclusion of turbine coefficient (Kt) into the existing pier scour equations can predict the maximum scour depth of a tidal turbine with an error range of 5−24%.

Keywords