Applied Sciences (Dec 2022)

A Study on Crowd Evacuation Model Considering Squeezing Equilibrium in Crowded Areas

  • Longcheng Yang,
  • Juan Wei,
  • Zhihai Tang,
  • Jun Hu,
  • Zhouyi Hu

DOI
https://doi.org/10.3390/app13010544
Journal volume & issue
Vol. 13, no. 1
p. 544

Abstract

Read online

A new crowd evacuation model is established to solve the stagnation problem of traditional social force models in a complex and dense scene. In the proposed model the acting forces between pedestrians, and between pedestrians and obstacles in the traditional social force model, are improved to find out the relationship in the two cases which are within the influence range and are not intersected, and those which are intersected and not greater than the maximum degree of squeezing, and to solve it for parameter optimization. The simulation platform built is used to compare the performance of the traditional social force model and the improved model, and to deeply analyze the relationship between the evacuation time and the degree of squeezing. The results show that as the evacuation time increases, the crowd in the emergency exit area is getting denser, the optimized model is distributed more evenly, and the probability of squeezing is lower. The optimized model has better stability in terms of the ability to control the intersection without exceeding the maximum degree of squeezing. Due to less squeezing, the optimized model can reduce the time of passing through the exit to a large extent. Therefore, the way to resolve the disorderly evacuation of pedestrians caused by excessive crowd density in the evacuation process is to solve optimization parameters.

Keywords