Sensors (Mar 2023)

A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography

  • Xing Wei,
  • Ruifang Sui

DOI
https://doi.org/10.3390/s23063144
Journal volume & issue
Vol. 23, no. 6
p. 3144

Abstract

Read online

Optical coherence tomography (OCT) is an emerging imaging technique for diagnosing ophthalmic diseases and the visual analysis of retinal structure changes, such as exudates, cysts, and fluid. In recent years, researchers have increasingly focused on applying machine learning algorithms, including classical machine learning and deep learning methods, to automate retinal cysts/fluid segmentation. These automated techniques can provide ophthalmologists with valuable tools for improved interpretation and quantification of retinal features, leading to more accurate diagnosis and informed treatment decisions for retinal diseases. This review summarized the state-of-the-art algorithms for the three essential steps of cyst/fluid segmentation: image denoising, layer segmentation, and cyst/fluid segmentation, while emphasizing the significance of machine learning techniques. Additionally, we provided a summary of the publicly available OCT datasets for cyst/fluid segmentation. Furthermore, the challenges, opportunities, and future directions of artificial intelligence (AI) in OCT cyst segmentation are discussed. This review is intended to summarize the key parameters for the development of a cyst/fluid segmentation system and the design of novel segmentation algorithms and has the potential to serve as a valuable resource for imaging researchers in the development of assessment systems related to ocular diseases exhibiting cyst/fluid in OCT imaging.

Keywords