Nutrients (Mar 2023)

Isolation of Alginate-Degrading Bacteria from the Human Gut Microbiota and Discovery of <i>Bacteroides xylanisolvens</i> AY11-1 as a Novel Anti-Colitis Probiotic Bacterium

  • Tianyu Fu,
  • Yamin Wang,
  • Mingfeng Ma,
  • Wei Dai,
  • Lin Pan,
  • Qingsen Shang,
  • Guangli Yu

DOI
https://doi.org/10.3390/nu15061352
Journal volume & issue
Vol. 15, no. 6
p. 1352

Abstract

Read online

Alginate has been documented to prevent the development and progression of ulcerative colitis by modulating the gut microbiota. However, the bacterium that may mediate the anti-colitis effect of alginate has not been fully characterized. We hypothesized that alginate-degrading bacteria might play a role here since these bacteria could utilize alginate as a carbon source. To test this hypothesis, we isolated 296 strains of alginate-degrading bacteria from the human gut. Bacteroides xylanisolvens AY11-1 was observed to have the best capability for alginate degradation. The degradation and fermentation of alginate by B. xylanisolvens AY11-1 produced significant amounts of oligosaccharides and short-chain fatty acids. Further studies indicated that B. xylanisolvens AY11-1 could alleviate body weight loss and contraction of colon length, reduce the incidences of bleeding and attenuate mucosal damage in dextran sulfate sodium (DSS)-fed mice. Mechanistically, B. xylanisolvens AY11-1 improved gut dysbiosis and promoted the growth of probiotic bacteria, including Blautia spp. And Prevotellaceae UCG-001, in diseased mice. Additionally, B. xylanisolvens AY11-1 showed no oral toxicity and was well-tolerated in male and female mice. Altogether, we illustrate for the first time an anti-colitis effect of the alginate-degrading bacterium B. xylanisolvens AY11-1. Our study paves the way for the development of B. xylanisolvens AY11-1 as a next-generation probiotic bacterium.

Keywords