This study introduces the design of a nonlinear frequency-modulated continuous wave (FMCW) laser ranging system. In contrast to the commonly used triangular wave linear modulation, this study utilizes sinusoidal wave modulation. The frequency information of the original sinusoidal frequency-modulated signal is extracted using an on-chip interferometer based on SiON waveguides and IQ demodulation technology. After fitting the measured interference signal at equal frequency intervals, the corresponding distance information is derived using the fast Fourier transform (FFT). The principles underlying this method are thoroughly analyzed and derived, with its accuracy confirmed through experimental validation.