Chemical Industry and Chemical Engineering Quarterly (Jan 2024)
Numerical simulation of the oscillating thin plate impact on nanofluids flow in channel
Abstract
The present numerical study aims to present the effect of a titled oscillating thin plate with different inclination angles on the Al2O3-water nanofluid flow and heat transfer performance. The subsequent work establishes methods for forming fluid-structure interactions by the impact of Al2O3-water nanofluid at 0.1-1.0 vol. % volume fraction upon the thin plate using COMSOL Multiphysics 5.4. The turbulent model is solved using the (k-ε) model, and the flow assembly around the thin plate obstacle has been confirmed at the Reynolds number of Re=4×104. It exemplifies how Nanofluid flow interaction can distort structures. The turbulent, two-dimensional, stationary, and incompressible flow around an oscillating thin plate with inclined angles with upstream and downstream mounted inside a horizontal channel was studied. The numerical study includes an investigation of the effect of five inclination angles of the thin plate (30, 60, 90, 120, and 150°) on the pressure, velocity, and temperature contours of the Al2O3-water nanofluid. Also, the study presented the drag profile and left a force on the thin plate caused by the fluid flow. The results showed that a titled oscillating thin plate inside the flow direction increases pressure drop, von Mises deformation stress, x-displacement and drag force fields, and the Nusselt number. Where the pressure increased from 2.61×103 to 6.21×103 pa, the von Mises stress increased from 4.43×106 to 1.78×107 N/m, and the X-displacement increased from 1.6 to 5.5 mm when increasing the plate angle from 30 to 90°.
Keywords