Photonics (Aug 2024)

3D Correlation Imaging for Localized Phase Disturbance Mitigation

  • Francesco V. Pepe,
  • Milena D’Angelo

DOI
https://doi.org/10.3390/photonics11080733
Journal volume & issue
Vol. 11, no. 8
p. 733

Abstract

Read online

Correlation plenoptic imaging is a procedure to perform light-field imaging without spatial resolution loss, by measuring the second-order spatiotemporal correlations of light. We investigate the possibility of using correlation plenoptic imaging to mitigate the effect of a phase disturbance in the propagation from the object to the main lens. We assume that this detrimental effect, which can be due to a turbulent medium, is localized at a specific distance from the lens, and is slowly varying in time. The mitigation of turbulence effects has already fostered the development of both light-field imaging and correlation imaging procedures. Here, we aim to merge these aspects, proposing a correlation light-field imaging method to overcome the effects of slowly varying turbulence, without the loss of lateral resolution, typical of traditional plenoptic imaging devices.

Keywords