Computation (Aug 2023)

Evolutionary PINN Learning Algorithms Inspired by Approximation to Pareto Front for Solving Ill-Posed Problems

  • Tatiana Lazovskaya,
  • Dmitriy Tarkhov,
  • Maria Chistyakova,
  • Egor Razumov,
  • Anna Sergeeva,
  • Tatiana Shemyakina

DOI
https://doi.org/10.3390/computation11080166
Journal volume & issue
Vol. 11, no. 8
p. 166

Abstract

Read online

The article presents the development of new physics-informed evolutionary neural network learning algorithms. These algorithms aim to address the challenges of ill-posed problems by constructing a population close to the Pareto front. The study focuses on comparing the algorithm’s capabilities based on three quality criteria of solutions. To evaluate the algorithms’ performance, two benchmark problems have been used. The first involved solving the Laplace equation in square regions with discontinuous boundary conditions. The second problem considered the absence of boundary conditions but with the presence of measurements. Additionally, the study investigates the influence of hyperparameters on the final results. Comparisons have been made between the proposed algorithms and standard algorithms for constructing neural networks based on physics (commonly referred to as vanilla’s algorithms). The results demonstrate the advantage of the proposed algorithms in achieving better performance when solving incorrectly posed problems. Furthermore, the proposed algorithms have the ability to identify specific solutions with the desired smoothness.

Keywords