Remote Sensing (Aug 2024)
Cascade Clutter Suppression Method for Airborne Frequency Diversity Array Radar Based on Elevation Oblique Subspace Projection and Azimuth-Doppler Space-Time Adaptive Processing
Abstract
Airborne Frequency Diversity Array (FDA) radar operating at a high pulse repetition frequency encounters severe range-ambiguous clutter. The slight frequency increments introduced by the FDA result in angle and range coupling. Under these conditions, conventional space-time adaptive processing (STAP) often exhibits diminished performance or fails, complicating target detection. This paper proposes a method combining elevation oblique subspace projection with azimuth-Doppler STAP to suppress range-ambiguous clutter. The method compensates for the quadratic range dependence by analyzing the relationship between elevation frequency and range. It uses an elevation oblique subspace projection technique to construct an elevation adaptive filter, which separates clutter from ambiguous regions. Finally, residual clutter suppression is achieved through azimuth-Doppler STAP, enhancing target detection performance. Simulation results demonstrate that the proposed method effectively addresses range dependence and ambiguity issues, improving target detection performance in complex airborne FDA radar environments.
Keywords