Atmospheric Chemistry and Physics (Jan 2017)

Study of the footprints of short-term variation in XCO<sub>2</sub> observed by TCCON sites using NIES and FLEXPART atmospheric transport models

  • D. A. Belikov,
  • S. Maksyutov,
  • A. Ganshin,
  • R. Zhuravlev,
  • N. M. Deutscher,
  • D. Wunch,
  • D. G. Feist,
  • I. Morino,
  • R. J. Parker,
  • K. Strong,
  • Y. Yoshida,
  • A. Bril,
  • S. Oshchepkov,
  • H. Boesch,
  • M. K. Dubey,
  • D. Griffith,
  • W. Hewson,
  • R. Kivi,
  • J. Mendonca,
  • J. Notholt,
  • M. Schneider,
  • R. Sussmann,
  • V. A. Velazco,
  • S. Aoki

DOI
https://doi.org/10.5194/acp-17-143-2017
Journal volume & issue
Vol. 17, no. 1
pp. 143 – 157

Abstract

Read online

The Total Carbon Column Observing Network (TCCON) is a network of ground-based Fourier transform spectrometers (FTSs) that record near-infrared (NIR) spectra of the sun. From these spectra, accurate and precise observations of CO2 column-averaged dry-air mole fractions (denoted XCO2) are retrieved. TCCON FTS observations have previously been used to validate satellite estimations of XCO2; however, our knowledge of the short-term spatial and temporal variations in XCO2 surrounding the TCCON sites is limited. In this work, we use the National Institute for Environmental Studies (NIES) Eulerian three-dimensional transport model and the FLEXPART (FLEXible PARTicle dispersion model) Lagrangian particle dispersion model (LPDM) to determine the footprints of short-term variations in XCO2 observed by operational, past, future and possible TCCON sites. We propose a footprint-based method for the collocation of satellite and TCCON XCO2 observations and estimate the performance of the method using the NIES model and five GOSAT (Greenhouse Gases Observing Satellite) XCO2 product data sets. Comparison of the proposed approach with a standard geographic method shows a higher number of collocation points and an average bias reduction up to 0.15 ppm for a subset of 16 stations for the period from January 2010 to January 2014. Case studies of the Darwin and Reunion Island sites reveal that when the footprint area is rather curved, non-uniform and significantly different from a geographical rectangular area, the differences between these approaches are more noticeable. This emphasises that the collocation is sensitive to local meteorological conditions and flux distributions.