Sensing and Bio-Sensing Research (Aug 2024)
Graphene ribbons based THz toxic gas sensing
Abstract
In this paper, an optical chemical sensor is proposed to detect some toxic gases such as Methane (CH4), Nitrogen (N2), Nitrogen dioxide (NO2), and Carbon monoxide (CO). This type of chemical sensor consists of graphene ribbons and Kapton materials as sensing elements. Also, exploits electromagnetic properties such as absorption in terms of signal transducing. These kinds of small-scale, flexible architectures and advanced detection techniques are in demand to identify toxic gases as well. To develop the proposed chemical sensor, this study describes the structure in the aspect of an equivalent circuit model (ECM) mathematically, while the full-wave simulation (FEM) is performed as the reference. Acceptable agreement between the ECM and FEM simulations is shown while an interesting tuning capability against external stimulation is obtained. It should be noted that the ECM approach is performed in just a few seconds while the FEM simulation takes more than 3 h to produce results. In addition, the maximum error is around the second absorption peak and is less than 4%.The main contribution of this work is introducing a simple structure to distinguish several toxic gases in the sub-THz gap (0.1–2 THz). Additionally, ample simulations are performed to verify the sensor's reliability. According to the simulation results, the proposed meta-structure can appropriately show different peak frequencies and even different numbers of absorption peaks against different concentrations of toxic gases. Additionally, due to the ultra-thin nature of the graphene and the flexibility of the Kapton, the proposed sensor can be wearable while it is considered non-invasive testing.