Synthesis of SAPO-34 Nanoplates with High Si/Al Ratio and Improved Acid Site Density
Syed Fakhar Alam,
Min-Zy Kim,
Aafaq ur Rehman,
Devipriyanka Arepalli,
Pankaj Sharma,
Churl Hee Cho
Affiliations
Syed Fakhar Alam
Reaction and Separation Nanomaterials Laboratory, Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Min-Zy Kim
Reaction and Separation Nanomaterials Laboratory, Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Aafaq ur Rehman
Reaction and Separation Nanomaterials Laboratory, Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Devipriyanka Arepalli
Reaction and Separation Nanomaterials Laboratory, Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Pankaj Sharma
Department of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
Churl Hee Cho
Reaction and Separation Nanomaterials Laboratory, Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Two-dimensional SAPO-34 molecular sieves were synthesized by microwave hydrothermal process. The concentrations of structure directing agent (SDA), phosphoric acid, and silicon in the gel solution were varied and their effect on phase, shape, and composition of synthesized particles was studied. The synthesized particles were characterized by various techniques using SEM, XRD, BET, EDX, and NH3-TPD. Various morphologies of particles including isotropic, hyper rectangle, and nanoplates were obtained. It was found that the Si/Al ratio of the SAPO-34 particles was in a direct relationship with the density of acid sites. Moreover, the gel composition and preparation affected the chemistry of the synthesized particles. The slow addition of phosphoric acid improved the homogeneity of synthesis gel and resulted in SAPO-34 nanoplates with high density of acid sites, 3.482 mmol/g. The SAPO-34 nanoplates are expected to serve as a high performance catalyst due to the low mass transfer resistance and the high density of active sites.