Molecules (Jul 2022)

Structural Characteristics, Antioxidant, and Immunostimulatory Activities of an Acidic Polysaccharide from Raspberry Pulp

  • Yongjing Yang,
  • Xingxing Yin,
  • Dejun Zhang,
  • Benyin Zhang,
  • Jie Lu,
  • Xuehong Wang

DOI
https://doi.org/10.3390/molecules27144385
Journal volume & issue
Vol. 27, no. 14
p. 4385

Abstract

Read online

The extraction and characterization of new bioactive plant-derived polysaccharides with the potential for use as functional foods and medicine have attracted much attention. In the present study, A novel acidic polysaccharide (RPP-3a) with a weight-average molecular weight (Mw) of 88,997 Da was isolated from the raspberry pulp. RPP-3a was composed of rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid at a molar ratio of 13.1:28.6:16.8:1.4:6.2:33.9. Structural analysis suggested that the RPP-3a backbone was composed of repeating units of →4)-β-Galp-(1→3,4)-α-Rhap-(1→[4)-α-GalAp-(1→4)-α-GalAp-(1→]n with branches at the C-4 position of rhamnose. The side chain of RPP-3a, containing two branch levels, was comprised of α-Araf-(1→, →5)-α-Araf-(1→, →3,5)-α-Araf-(1→, →3)-β-Galp-(1→, →3,6)-β-Galp-(1→, →4)-β-Glcp-(1→, and →2,6)-α-Manp-1→ residues. RPP-3a exhibited moderate reducing power and strong hydroxyl and superoxide anion radical scavenging abilities. RPP-3a significantly promoted the viability of RAW264.7 macrophages by increasing the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) at both the expression and transcriptional levels. In summary, the immunostimulatory and antioxidant activities make RPP-3a a viable candidate as a health-beneficial functional dietary supplement.

Keywords