Current Issues in Molecular Biology (Mar 2023)

Increased Yield of Extracellular Vesicles after Cytochalasin B Treatment and Vortexing

  • Sirina V. Kurbangaleeva,
  • Valeriia Y. Syromiatnikova,
  • Angelina E. Prokopeva,
  • Aleksey M. Rogov,
  • Artur A. Khannanov,
  • Albert A. Rizvanov,
  • Marina O. Gomzikova

DOI
https://doi.org/10.3390/cimb45030158
Journal volume & issue
Vol. 45, no. 3
pp. 2431 – 2443

Abstract

Read online

Extracellular vesicles (EVs) are promising therapeutic instruments and vectors for therapeutics delivery. In order to increase the yield of EVs, a method of inducing EVs release using cytochalasin B is being actively developed. In this work, we compared the yield of naturally occurring extracellular vesicles and cytochalasin B-induced membrane vesicles (CIMVs) from mesenchymal stem cells (MSCs). In order to maintain accuracy in the comparative analysis, the same culture was used for the isolation of EVs and CIMVs: conditioned medium was used for EVs isolation and cells were harvested for CIMVs production. The pellets obtained after centrifugation 2300× g, 10,000× g and 100,000× g were analyzed using scanning electron microscopy analysis (SEM), flow cytometry, the bicinchoninic acid assay, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). We found that the use of cytochalasin B treatment and vortexing resulted in the production of a more homogeneous population of membrane vesicles with a median diameter greater than that of EVs. We found that EVs-like particles remained in the FBS, despite overnight ultracentrifugation, which introduced a significant inaccuracy in the calculation of the EVs yield. Therefore, we cultivated cells in a serum-free medium for the subsequent isolation of EVs. We observed that the number of CIMVs significantly exceeded the number of EVs after each step of centrifugation (2300× g, 10,000× g and 100,000× g) by up to 5, 9, and 20 times, respectively.

Keywords