In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

In vitro adherence of conjunctival bacteria to different oculoplastic materials

International Journal of Ophthalmology. 2018;11(12):1895-1901 DOI 10.18240/ijo.2018.12.03

 

Journal Homepage

Journal Title: International Journal of Ophthalmology

ISSN: 2222-3959 (Print); 2227-4898 (Online)

Publisher: Press of International Journal of Ophthalmology (IJO PRESS)

Society/Institution: Chinese Medical Association Xi'an Branch

LCC Subject Category: Medicine: Ophthalmology

Country of publisher: China

Language of fulltext: English

Full-text formats available: PDF

 

AUTHORS


Alvaro Toribio (Department of Ophthalmology, University Hospital of León, León 24071, Spain)

Honorina Martínez-Blanco (Department of Molecular Biology, University of León, León 24071, Spain)

Leandro Rodríguez-Aparicio (Department of Molecular Biology, University of León, León 24071, Spain)

Miguel Á. Ferrero (Department of Molecular Biology, University of León, León 24071, Spain)

Teresa Marrodán (Department of Clinical Microbiology, University Hospital of León, León 24071, Spain)

Isabel Fernández-Natal (Department of Clinical Microbiology, University Hospital of León, León 24071, Spain)

EDITORIAL INFORMATION

Double blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 32 weeks

 

Abstract | Full Text

AIM: To investigate the resistance to bacterial adhesion of materials used in oculoplastic surgery, particularly materials used in the manufacture of orbital implants. METHODS: Seven organisms of conjunctival flora (two strains of Staphylococcus epidermidis and one strain each of Staphylococcus aureus, Staphylococcus hominis, Corynebacterium amycolatum, Acinetobacter calcoaceticus, and Serratia marcescens) were selected. A lactic acid bacterium (Lactobacillus rhamnosus) was also included as positive control because of its well-known adhesion ability. Eight materials used to make oculoplastic prostheses were selected (glass, steel, polytetrafluoroethylene, polymethylmethacrylate, silicone from orbital implants, commercial silicone, porous polyethylene, and semi-smooth polyethylene). Materials surfaces and biofilms developed by strains were observed by scanning electron microscopy. Kinetics of growth and adhesion of bacterial strains were determined by spectrophotometry. Each strain was incubated in contact with plates of the different materials. After growth, attached bacteria were re-suspended and colony-forming units (CFUs) were counted. The number of CFUs per square millimetre of material was statistically analyzed. RESULTS: A mature biofilm was observed in studied strains except Staphylococcus hominis, which simply produced a microcolony. Materials showed a smooth surface on the microbial scale, although steel exhibited 1.0-μm-diameter grooves. Most organisms showed significant differences in adhesion according to the material. There were also significant differences in the total number of CFUs per square millimetre from each material (P=0.044). CFU counts were significantly higher in porous polyethylene than in silicone from orbital implants (P=0.038). CONCLUSION: Silicone orbital implants can resist microbial colonization better than porous polyethylene implants.