Sensors (Dec 2020)

A Single Image 3D Reconstruction Method Based on a Novel Monocular Vision System

  • Fupei Wu,
  • Shukai Zhu,
  • Weilin Ye

DOI
https://doi.org/10.3390/s20247045
Journal volume & issue
Vol. 20, no. 24
p. 7045

Abstract

Read online

Three-dimensional (3D) reconstruction and measurement are popular techniques in precision manufacturing processes. In this manuscript, a single image 3D reconstruction method is proposed based on a novel monocular vision system, which includes a three-level charge coupled device (3-CCD) camera and a ring structured multi-color light emitting diode (LED) illumination. Firstly, a procedure for the calibration of the illumination’s parameters, including LEDs’ mounted angles, distribution density and incident angles, is proposed. Secondly, the incident light information, the color distribution information and gray level information are extracted from the acquired image, and the 3D reconstruction model is built based on the camera imaging model. Thirdly, the surface height information of the detected object within the field of view is computed based on the built model. The proposed method aims at solving the uncertainty and the slow convergence issues arising in 3D surface topography reconstruction using current shape-from-shading (SFS) methods. Three-dimensional reconstruction experimental tests are carried out on convex, concave, angular surfaces and on a mobile subscriber identification module (SIM) card slot, showing relative errors less than 3.6%, respectively. Advantages of the proposed method include a reduced time for 3D surface reconstruction compared to other methods, demonstrating good suitability of the proposed method in reconstructing surface 3D morphology.

Keywords