Annals of Cardiac Anaesthesia (Jan 2020)

Comparison of continuous cardiac output monitoring derived from regional impedance cardiography with continuous thermodilution technique in cardiac surgical patients

  • G Bhavya,
  • P S Nagaraja,
  • Naveen G Singh,
  • S Ragavendran,
  • N Sathish,
  • N Manjunath,
  • K Ashok Kumar,
  • Vinayak B Nayak

DOI
https://doi.org/10.4103/aca.ACA_1_19
Journal volume & issue
Vol. 23, no. 2
pp. 189 – 192

Abstract

Read online

Background: Cardiac output (CO) assessment is a corner stone in advanced haemodynamic management, especially in critical ill patients. The present study was conducted to validate cardiac index and cardiac output by NICaS™ with the thermodilution technique using pulmonary artery catheter in post-operative cardiac surgical patients. Materials and Methods: This was a prospective observational clinical study conducted at a tertiary care hospital. 23 adult patients in the age range of 18-65 years who had undergone for elective coronary artery bypass grafting were included in the study. Results: Spearman's correlation coefficient of cardiac index between continuous Thermodilution (cTD) and Non-Invasive Cardiac System (NICaS™) showed a good correlation (r = 0.765, 95% confidence interval 0.70 to 0.82, P < 0.0001). There was a good correlation between cTD and NICaS™ for cardiac output (r = 0.759, 95% confidence interval 0.69 to 0.81, P < 0.0001), Bland-Altman plot for cardiac index between cTD and NICaS™ showed a mean bias of −0.66 ± 0.6919 with limits of agreement being −2.02 to 0.6936. Bland-Altman plot for cardiac output between cTD and NICaS™ showed a mean bias of −1.0386 ± 1.17 with limits of agreement being −3.34 to + 1.26. Percentage error for cardiac index and cardiac output were 64.78% and 64% respectively. Polar plot analysis showed an angular bias of 6.32° with radial limits of agreement being −8.114° to 20.75° for cardiac index and angular bias of 5.6682° with radial limits of agreement being −9.1422° to 20.4784° for cardiac output. Conclusion: NICaS™ demonstrated a good trending ability for both CI and CO. However, NICaS™ derived parameters are not interchangeable with the values derived from continuous thermodilution technique.

Keywords