Frontiers in Astronomy and Space Sciences (Jun 2018)

Periodic Orbits Close to That of the Moon in Hill's Problem

  • Giovanni B. Valsecchi,
  • Giovanni B. Valsecchi

DOI
https://doi.org/10.3389/fspas.2018.00020
Journal volume & issue
Vol. 5

Abstract

Read online

In the framework of the restricted, circular, 3-dimensional 3-body problem Sun-Earth-Moon, Valsecchi et al. (1993) found a set of 8 periodic orbits, with duration equal to that of the Saros cycle, and differing only for the initial phases, in which the motion of the massless Moon follows closely that of the real Moon. Of these, only 4 are actually independent, the other 4 being obtainable by symmetry about the plane of the ecliptic. In this paper the problem is treated in the framework of the 3-dimensional Hill's problem. It is shown that also in this problem there are 8 periodic orbits of duration equal to that of the Saros cycle, and that in these periodic orbits the motion of the Moon is very close to that of the real Moon. Moreover, as a consequence of the additional symmetry of Hill's problem about the y-axis, only 2 of the 8 periodic orbits are independent, the other ones being obtainable by exploiting the symmetries of the problem.

Keywords