Animals (Nov 2023)

Mild Intermittent Cold Stimulation Affects Cardiac Substance Metabolism via the Neuroendocrine Pathway in Broilers

  • Yuanyuan Liu,
  • Lu Xing,
  • Yong Zhang,
  • Xiaotao Liu,
  • Tingting Li,
  • Shijie Zhang,
  • Haidong Wei,
  • Jianhong Li

DOI
https://doi.org/10.3390/ani13223577
Journal volume & issue
Vol. 13, no. 22
p. 3577

Abstract

Read online

This study aimed to investigate the impact of cold adaptation on the neuroendocrine and cardiac substance metabolism pathways in broilers. The broilers were divided into the control group (CC), cold adaptation group (C3), and cold-stressed group (C9), and experimental period was divided into the training period (d 1–35), recovery period (d 36–43), and cold stress period (d 43–44). During the training period, the CC group was reared at ambient temperature, while C3 and C9 groups were reared at 3 °C and 9 °C lower than the ambient temperature, respectively, for 5 h/d at 1 d intervals. During the recovery period, all the groups were maintained at 20 °C. Lastly, during the cold stress period, the groups were divided into two sub-groups, and each sub-group was placed at 10 °C for 12 h (Y12) or 24 h (Y24) for acute cold stimulation. The blood, hypothalamic, and cardiac tissues samples were obtained from all the groups during the training, recovery, and acute stress periods. The results revealed that the transcription of calcium voltage-gated channel subunit alpha 1 C (CACNAIC) was increased in the hypothalamic tissues of the C3 group (p p p phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), SREBP1c, FASN, ACC1, and SCD genes was down-regulated in the C3 and C9 groups (p p forkhead box O1 (FoxO1), PEPCK, G6Pase, GLUT1, HK1, PFK, and LDHB genes was up-regulated in the C3 and C9 groups (p heat shock protein (HSP) 70 and HSP90 were significantly increased in the C3 group (p < 0.05). These results indicate that intermittent cold training can enhance cold stress tolerance in broilers by regulating their neuroendocrine and cardiac substance metabolism pathways.

Keywords