International Journal of Molecular Sciences (Sep 2023)

Hierarchical Ni-Mn LDHs@CuC<sub>2</sub>O<sub>4</sub> Nanosheet Arrays-Modified Copper Mesh: A Dual-Functional Material for Enhancing Oil/Water Separation and Supercapacitors

  • Yue Wu,
  • Guangyuan Lu,
  • Ping Xu,
  • Tian C. Zhang,
  • Huaqiang He,
  • Shaojun Yuan

DOI
https://doi.org/10.3390/ijms241814085
Journal volume & issue
Vol. 24, no. 18
p. 14085

Abstract

Read online

The pursuit of superhydrophilic materials with hierarchical structures has garnered significant attention across diverse application domains. In this study, we have successfully crafted Ni-Mn LDHs@CuC2O4 nanosheet arrays on a copper mesh (CM) through a synergistic process involving chemical oxidation and hydrothermal deposition. Initially, CuC2O4 nanosheets were synthesized on the copper mesh, closely followed by the growth of Ni-Mn LDHs nanosheets, culminating in the establishment of a multi-tiered surface architecture with exceptional superhydrophilicity and remarkable underwater superoleophobicity. The resultant Ni-Mn LDHs@CuC2O4 CM membrane showcased an unparalleled amalgamation of traits, including superhydrophilicity, underwater superoleophobicity, and the ability to harness photocatalytic forces for self-cleaning actions, making it an advanced oil-water separation membrane. The membrane’s performance was impressive, manifesting in a remarkable water flux range (70 kL·m−2·h−1) and an efficient oil separation capability for both oil/water mixture and surfactant-stabilized emulsions (below 60 ppm). Moreover, the innate superhydrophilic characteristics of the membrane rendered it a prime candidate for deployment as a supercapacitor cathode material. Evidenced by a capacitance of 5080 mF·cm−2 at a current density of 6 mA cm−2 in a 6 M KOH electrolyte, the membrane’s potential extended beyond oil-water separation. This work not only introduces a cutting-edge oil-water separation membrane and supercapacitor electrode but also offers a promising blueprint for the deliberate engineering of hierarchical structure arrays to cater to a spectrum of related applications.

Keywords