Immune Enhancement by the Tetra-Peptide Hydrogel as a Promising Adjuvant for an H7N9 Vaccine against Highly Pathogenic H7N9 Virus
Xiaoxin Wu,
Songjia Tang,
Zhehua Wang,
Xiaoyun Ma,
Lingjian Zhang,
Fen Zhang,
Lanlan Xiao,
Shuai Zhao,
Qian Li,
Ying Wang,
Qingjing Wang,
Keda Chen
Affiliations
Xiaoxin Wu
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Songjia Tang
Plastic and Aesthetic Surgery Department, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
Zhehua Wang
Department of Infectious Disease and Medical Clinical Laboratory, Zhejiang Hospital, 1229 Gudun Road, Xihu, Hangzhou 310012, China
Xiaoyun Ma
Department of Infectious Disease and Medical Clinical Laboratory, Zhejiang Hospital, 1229 Gudun Road, Xihu, Hangzhou 310012, China
Lingjian Zhang
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Fen Zhang
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Lanlan Xiao
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Shuai Zhao
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Qian Li
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Ying Wang
Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
Qingjing Wang
Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
Keda Chen
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Background: Short peptide hydrogel was reported as a possible adjuvant for vaccines. In order to evaluate whether the Tetra-Peptide Hydrogel can be a promising adjuvant for an H7N9 vaccine against the highly pathogenic H7N9 virus, we conducted this study. Methods: Tetra-Peptide Hydrogels (D and L conformations) were prepared by a self-assembly system using a Naproxen acid modified tetra peptide of GFFY (Npx-GFFY). Mice received two immunizations with the D-Tetra-Peptide Hydrogel adjuvant vaccine, the L-Tetra-Peptide Hydrogel adjuvant vaccine, or the split vaccine. Fourteen days following the second dose, the mice were challenged with the highly pathogenic A/Guangdong/GZ8H002/2017(H7N9) virus. The mice were observed for signs of illness, weight loss, pathological alterations of the lung tissues and immune responses in the following 2 weeks. Results: The D/L-Tetra-Peptide Hydrogels resembled long bars with hinges on each other, with a diameter of ~10 nm. The H7N9 vaccine was observed to adhere to the hydrogel. All the unvaccinated mice were dead by 8 days post infection with H7N9. The mice immunized by the split H7N9 vaccine were protected against infection with H7N9. Mice immunized by D/L-Tetra-Peptide Hydrogel adjuvant vaccines experienced shorter symptomatic periods and their micro-neutralization titers were higher than in the split H7N9 vaccine at 2 weeks post infection. The hemagglutinating inhibition (HI) titer in the L-Tetra-Peptide Hydrogel adjuvant vaccine group was higher than that in the split H7N9 vaccine 1 week and 2 weeks post infection. The HI titer in the D-Tetra-Peptide Hydrogel adjuvant vaccine group was higher than that in the split H7N9 vaccine at 2 weeks post infection. Conclusion: The D/L Tetra-Peptide Hydrogels increased the protection of the H7N9 vaccine and could be promising adjuvants for H7N9 vaccines against highly pathogenic H7N9 virus.