Scientific Reports (Nov 2023)

Phytochemical analysis, biological activities of methanolic extracts and an isolated flavonoid from Tunisian Limoniastrum monopetalum (L.) Boiss: an in vitro and in silico investigations

  • Amel Bouzidi,
  • Ahmed Azizi,
  • Omar Messaoudi,
  • Kirouani Abderrezzak,
  • Giovanni Vidari,
  • Ahmed Noureddine Hellal,
  • Chirag N. Patel

DOI
https://doi.org/10.1038/s41598-023-46457-6
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract In recent years, due to the dramatic increase of the bacteria resistance to antibiotics and chemotherapeutic drugs, an increasing importance is given to the discovery of novel bioactive molecules, more potent than those in use. In this contest, methanol extracts of different parts of the medicinal plant Limoniastrum monopetalum (L.) Boiss. (Plumbaginaceae), widely occurring in Tunisia, were prepared to evaluate the antimicrobial and antiproliferative activities. The methanol extract of the roots showed the highest antibacterial activity against E. coli, S. aureus and E. faecalis, whereas the stem extract exhibited the highest antiproliferative effects towards a Hela cell line. Analysis of volatile fractions, using gas chromatography–mass spectrometry (GC–MS) and gas chromatography–flame ionization detector (GC–FID) techniques, led to the identification of camphor as the most abundant constituent, which represented from 84.85 to 99.48% of the methanol extracts. Multiple chromatographic separation of the methanol leaf extract afforded the flavonoid maeopsin-6-O-glucoside (S1) and a few fractions that were subjected to biological activity assays. One fraction exhibited interesting antibacterial activity against E. coli and E. faecalis (MIC values of 62.5 and 78.12 µg/mL, respectively), and antiproliferative effects against Hela and A549 cells (IC50 = 226 and 242.52 μg/mL, respectively). In addition, in silico studies indicated that maesopsin-6-O-glucoside, which was moderately active against Staphylococcus aureus, strongly interacted with the active site of the accessory gene regulator protein A (AgrA) of Staphylococcus aureus.