Hematopoiesis post anti-CD117 monoclonal antibody treatment in wild-type and Fanconi anemia settings
Morgane Denis,
Leah Swartzrock,
Hana Willner,
Quenton R. Bubb,
Ethan Haslett,
Yan Yi Chan,
Anzhi Chen,
Mark R. Krampf,
Agnieszka D. Czechowicz
Affiliations
Morgane Denis
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Leah Swartzrock
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Hana Willner
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Quenton R. Bubb
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Ethan Haslett
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Yan Yi Chan
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Anzhi Chen
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Mark R. Krampf
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Agnieszka D. Czechowicz
Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
Anti-CD117 monoclonal antibody (mAb) agents have emerged as exciting alternative conditioning strategies to traditional genotoxic irradiation or chemotherapy conditioning for both allogeneic and autologous gene-modified hematopoietic stem cell transplantation. Further, these agents are concurrently being explored in the treatment of mast cell disorders. Despite promising results in animal models and more recently in patients, the short-term and long-term effects of these treatments have not been fully explored. We conducted rigorous assessments to evaluate the effects of antagonistic anti-mCD117 mAb, ACK2, on hematopoiesis in wild-type (WT) and Fanconi Anemia (FA) mice. Importantly, we found no evidence of short-term DNA damage in either setting following this treatment suggesting that ACK2 does not induce immediate genotoxicity, providing crucial insights into its safety profile. Surprisingly, FA mice exhibited an increase in colony formation post-ACK2 treatment without accompanying DNA damage, indicating a potential targeting of hematopoietic stem cells (HSCs) and expansion of hematopoietic progenitor cells. Moreover, the long-term phenotypic and functional changes in hematopoietic stem and progenitor cells did not significantly differ between the ACK2-treated and control groups, in either setting, supporting that ACK2 does not adversely affect hematopoietic capacity. These finding underscore the safety of these agents when utilized as a short-course treatment in the conditioning context, as they did not induce significant changes in DNA damage amongst hematopoietic stem or progenitor cells. However, through a comparison of gene expression via single-cell RNA sequencing between untreated and treated mice, it was revealed that the ACK2 mAb, via c-Kit downregulation, effectively modulated the MAPK pathway with Fos down-regulation in WT and FA mice. Importantly, this modulation was achieved without causing prolonged disruptions. These findings validate the safety of the treatment and also enhance our understanding of its intricate mode of action at the molecular level.