A DFT Study of the Geometrical, Spectroscopical and Reactivity Properties of Diindolylmethane-Phenylboronic Acid Hybrids
Amira Jalil Fragoso-Medina,
René Gerardo Escobedo-González,
María Inés Nicolás-Vázquez,
Gabriel Arturo Arroyo-Razo,
María Olivia Noguez-Córdova,
René Miranda-Ruvalcaba
Affiliations
Amira Jalil Fragoso-Medina
Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Campo 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico C.P. 54740, Mexico
René Gerardo Escobedo-González
Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Campo 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico C.P. 54740, Mexico
María Inés Nicolás-Vázquez
Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Campo 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico C.P. 54740, Mexico
Gabriel Arturo Arroyo-Razo
Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Campo 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico C.P. 54740, Mexico
María Olivia Noguez-Córdova
Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Campo 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico C.P. 54740, Mexico
René Miranda-Ruvalcaba
Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Campo 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico C.P. 54740, Mexico
The structure of the ortho-, meta- and para- hybrid diindolylmethane-phenylboronic acids and their interactions were optimized with by a quantum chemical method, using density functional theory at the (DFT) level. Thus, infrared bands were assigned based on the scaled theoretical wavenumbers by correlating the respective experimental data of the molecules. In addition, the corresponding 1H-/13C-/11B-NMR experimental and theoretical chemical shifts were correlated. The target molecules showed a poor treatment of the OH shifts in the GIAO method due to the absence of explicit solvent effects in these calculations; therefore, they were explicitly considered with acetone molecules. Moreover, the electron density at the hydrogen bond critical point increased, generating stabilization energy, from weak to moderate or weak to strong, serving as an indicator of the strength of the hydrogen bond between the different intermolecular interactions. Finally, some properties related to the reactive behavior of the target molecules associated with their cytotoxic effects and metabolic pathways were also calculated.