Gels (Sep 2022)
Mechanical Characterization of Synthetic Gels for Creation of Surrogate Hands Subjected to Low-Velocity Impacts
Abstract
The development of human body simulators that can be used as surrogates for testing protective devices and measures requires selecting synthetic materials with mechanical properties closely representative of the human tissues under consideration. For impact tests, gelatinous materials are often used to represent the soft tissues as a whole without distinguishing layers such as skin, fat, or muscles. This research focuses on the mechanical characterization of medical-grade synthetic gels that can be implemented to represent the soft tissues of the hand. Six grades of commercially available gels are selected for quasi-static hardness and firmness tests as well as for controlled low-velocity impact tests, which are not routinely conducted by gel manufacturers and require additional considerations such as energy level and specimen sizes relevant to the specific application. Specimens subject to impacts represent the hand thicknesses at the fingers, knuckles, and mid-metacarpal regions. Two impact test configurations are considered: one with the gel specimens including a solid insert representing a bone and one without this insert. The impact behavior of the candidate gels is evaluated by the coefficient of restitution, the energy loss percentage, and the peak reaction force at the time of impact. The resulting values are compared with similar indicators reported for experiments with cadaveric hands. Relatively softer gels, characterized by Shore OOO hardness in the range of 32.6 ± 0.9 to 34.4 ± 2.0, closely matched the impact behavior of cadaveric specimens. These results show that softer gels would be the most suitable gels to represent soft tissues in the creation of surrogate hands that can be used for extensive impact testing, thus, minimizing the need for cadaveric specimens.
Keywords