PLoS ONE (Jan 2020)

Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics.

  • Claudia Coleine,
  • Federica Gevi,
  • Giuseppina Fanelli,
  • Silvano Onofri,
  • Anna Maria Timperio,
  • Laura Selbmann

DOI
https://doi.org/10.1371/journal.pone.0233805
Journal volume & issue
Vol. 15, no. 5
p. e0233805

Abstract

Read online

Antarctic cryptoendolithic communities are self-supporting borderline ecosystems spreading across the extreme conditions of the Antarctic desert and represent the predominant life-form in the ice-free areas of McMurdo Dry Valleys, accounted as the closest terrestrial Martian analogue. Components of these communities are highly adapted extremophiles and extreme-tolerant microorganisms, among the most resistant known to date. Recently, studies investigated biodiversity and community composition in these ecosystems but the metabolic activity of the metacommunity has never been investigated. Using an untargeted metabolomics, we explored stress-response of communities spreading in two sites of the same location, subjected to increasing environmental pressure due to opposite sun exposure, accounted as main factor influencing the diversity and composition of these ecosystems. Overall, 331 altered metabolites (206 and 125 unique for north and south, respectively), distinguished the two differently exposed communities. We also selected 10 metabolites and performed two-stage Receiver Operating Characteristic (ROC) analysis to test them as potential biomarkers. We further focused on melanin and allantoin as protective substances; their concentration was highly different in the community in the shadow or in the sun. These results clearly indicate that opposite insolation selected organisms in the communities with different adaptation strategies in terms of key metabolites produced.