Scientific Reports (May 2024)
Closing the loop in minimally supervised human–robot interaction: formative and summative feedback
Abstract
Abstract Human instructors fluidly communicate with hand gestures, head and body movements, and facial expressions, but robots rarely leverage these complementary cues. A minimally supervised social robot with such skills could help people exercise and learn new activities. Thus, we investigated how nonverbal feedback from a humanoid robot affects human behavior. Inspired by the education literature, we evaluated formative feedback (real-time corrections) and summative feedback (post-task scores) for three distinct tasks: positioning in the room, mimicking the robot’s arm pose, and contacting the robot’s hands. Twenty-eight adults completed seventy-five 30-s-long trials with no explicit instructions or experimenter help. Motion-capture data analysis shows that both formative and summative feedback from the robot significantly aided user performance. Additionally, formative feedback improved task understanding. These results show the power of nonverbal cues based on human movement and the utility of viewing feedback through formative and summative lenses.