Atmosphere (Dec 2021)

Characteristics of Turbulence and Aerosol Optical and Radiative Properties during Haze–Fog Episodes in Shenyang, Northeast China

  • Xiaolan Li,
  • Yanjun Ma,
  • Yangfeng Wang,
  • Shuo Lu,
  • Hujia Zhao,
  • Ningwei Liu,
  • Ye Hong,
  • Dongdong Wang

DOI
https://doi.org/10.3390/atmos12121658
Journal volume & issue
Vol. 12, no. 12
p. 1658

Abstract

Read online

The characteristics of turbulence in the planetary boundary layer (PBL) and the aerosol optical and radiative properties during haze and haze–fog mixed episodes on 22–27 January 2021, in Shenyang, a provincial city in Northeast China, were analyzed using meteorological and aerosol observations. During the haze episode, the hourly mean PM2.5 concentration reached a maximum of 337 µg m−3 and visibility decreased to 1.6 km. The PM2.5 concentration decreased gradually during the haze–fog mixed episode as a result of the scavenging effects of fog, but visibility mostly remained below 1 km owing to high ambient relative humidity (>90%). During the haze–fog mixed episode, an increasing proportion of PM2.5 led to a higher ratio of the backward to the total scattering coefficient. As fog occurred, downward shortwave radiation arriving at the surface was significantly reduced, and upward longwave radiation increased and almost equaled the downward longwave radiation, which can be used as a good indicator for distinguishing haze and fog. Mechanical turbulence was weak during both episodes, and latent heat flux varied within a wider range during the haze–fog mixed episode. The PBL dynamic structure affected the vertical distribution of aerosols/fog droplets. Aerosol-rich layers appeared at altitudes below 0.5 km and above 0.6 km during the haze episode. The elevated aerosol layer was related to the aerosol transport from upstream polluted areas caused by strong upper-level turbulence, and it began to mix vertically after sunrise because of convective turbulence. Aerosols and fog droplets were mostly trapped in a shallower PBL with a height of 0.2–0.4 km during the haze–fog mixed episode because of weaker turbulence.

Keywords