Natural Variation in Fatty Acid Composition of Diverse World Soybean Germplasms Grown in China
Ahmed M. Abdelghany,
Shengrui Zhang,
Muhammad Azam,
Abdulwahab S. Shaibu,
Yue Feng,
Jie Qi,
Yanfei Li,
Yu Tian,
Huilong Hong,
Bin Li,
Junming Sun
Affiliations
Ahmed M. Abdelghany
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Shengrui Zhang
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Muhammad Azam
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Abdulwahab S. Shaibu
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Yue Feng
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Jie Qi
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Yanfei Li
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Yu Tian
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Huilong Hong
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Bin Li
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Junming Sun
The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
Soybean (Glycine max L. Merr.) is one of the most important crops in the world. Its major content of vegetable oil made it widely used for human consumption and several food industries. To investigate the variation in seed fatty acid composition of soybeans from different origins, a set of 633 soybean accessions originated from four diverse germplasm collections—including China, United States of America (USA), Japan, and Russia—were grown in three locations, Beijing, Anhui, and Hainan for two years. The results showed significant differences (P < 0.001) among the four germplasm origins for all fatty acid contents investigated. Higher levels, on average, of palmitic acid (PA) and linolenic acid (LNA) were observed in Russian germplasm (12.31% and 8.15%, respectively), whereas higher levels of stearic acid (SA) and oleic acid (OA) were observed in Chinese germplasm (3.95% and 21.95%, respectively). The highest level of linoleic acid (LA) was noticed in the USA germplasm accessions (56.34%). The largest variation in fatty acid composition was found in LNA, while a large variation was observed between Chinese and USA germplasms for LA level. Maturity group (MG) significantly (P < 0.0001) affected all fatty acids and higher levels of PA, SA, and OA were observed in early maturing accessions, while higher levels of LA and LNA were observed in late maturing accessions. The trends of fatty acids concentrations with different MG in this study further provide an evidence of the importance of MG in breeding for such soybean seed components. Collectively, the unique accessions identified in this study can be used to strengthen the soybean breeding programs for meeting various human nutrition patterns around the globe.