Nuclear Energy and Technology (Dec 2022)
On the concept of “effective delayed neutron fraction”
Abstract
Read online Read online Read online
The article considers methodological issues related to the conceptual and terminological apparatus of the dynamics of nuclear reactors. Based on an elementary analysis of the standard point reactor kinetics equations, the author shows that it is necessary to clarify the physical meaning of the parameter β included in the equations, which is traditionally interpreted as the “effective delayed neutrons fraction” (EDNF). It follows directly from the kinetics equations that the parameter β, which appears in these equations as the EDNF, is, from the point of view of the neutron balance, the fraction of prompt neutrons consumed for the generation of delayed neutron precursors (DNPs), and, from the point of view of the DNP balance, the DNP yield per prompt neutron in a single fission event. With these interpretations taken into account, the role of the β parameter is considered in situations related with its adjustment by multiplying it by the “delayed neutron efficiency factor” and with the establishment of the actual fractions of prompt and delayed neutrons. In particular, it is shown that: the statement “if the delayed neutron fraction is β, then the prompt neutron fraction is equal to 1 – β”, used in the problems of analyzing the nuclear reactor dynamics as a starting position, cannot be considered applicable to any reactor conditions; an increase in the β parameter by multiplying it by the “delayed neutron efficiency factor” leads, contrary to traditional interpretations, not to an increase but to a decrease in neutron reproduction in a supercritical reactor. The proposed clarifications are appropriate both in terms of more adequate descriptions of processes in nuclear reactors and in relation to the formulations of nuclear safety requirements.