Molecules (Mar 2021)

Recoverable Palladium-Catalyzed Carbon-Carbon Bond Forming Reactions under Thermomorphic Mode: Stille and Suzuki-Miyaura Reactions

  • Eskedar Tessema,
  • Vijayanath Elakkat,
  • Chiao-Fan Chiu,
  • Zong-Lin Tsai,
  • Ka Long Chan,
  • Chia-Rui Shen,
  • Han-Chang Su,
  • Norman Lu

DOI
https://doi.org/10.3390/molecules26051414
Journal volume & issue
Vol. 26, no. 5
p. 1414

Abstract

Read online

The reaction of [PdCl2(CH3CN)2] and bis-4,4′-(RfCH2OCH2)-2,2′-bpy (1a–d), where Rf = n-C11F23 (a), n-C10F21 (b), n-C9F19 (c) and n-C8F17 (d), respectively, in the presence of dichloromethane (CH2Cl2) resulted in the synthesis of Pd complex, [PdCl2[4,4′-bis-(RfCH2OCH2)-2,2′-bpy] (2a–d). The Pd-catalyzed Stille arylations of vinyl tributyltin with aryl halides were selected to demonstrate the feasibility of recycling usage with 2a as the catalyst using NMP (N-methyl-2-pyrrolidone) as the solvent at 120–150 °C. Additionally, recycling and electronic effect studies of 2a–c were also carried out for Suzuki-Miyaura reaction of phenylboronic acid derivatives, 4-X-C6H4-B(OH)2, (X = H or Ph) with aryl halide, 4-Y-C6H4-Z, (Y = CN, H or OCH3; Z = I or Br) in dimethylformamide (DMF) at 135–150 °C. At the end of each cycle, the product mixtures were cooled to lower temperature (e.g., −10 °C), and then catalysts were recovered by decantation with Pd leaching less than 1%. The products were quantified by gas chromatography/mass spectrometry (GC/MS) analysis or by the isolated yield. The complex 2a-catalyzed Stille reaction of aryl iodides with vinyl tributyltin have good recycling results for a total of 8 times, with a high yield within short period of time (1–3 h). Similarly, 2a–c-catalyzed Suzuki-Miyaura reactions also have good recycling results. The electronic effect studies from substituents in both Stille and Suzuki-Miyaura coupling reactions showed that electron withdrawing groups speed up the reaction rate. To our knowledge, this is the first example of recoverable fluorous long-chained Pd-catalyzed Stille reactions under the thermomorphic mode.

Keywords