대한환경공학회지 (Feb 2020)
Effects of the Pyrolysis Temperature on Adsorption of Carbamazepine and Ibuprofen by NaOH Pre-treated Pine Sawdust Biochars
Abstract
Objective:The main purpose of this study was to examine the impacts of the pyrolysis temperature on the removal of pharmaceuticals (i.e., ibuprofen (IBF) and carbamazepine (CBZ)) using NaOH pre-treated biochars produced from pine sawdusts. Methods:Two different types of kinetic and isotherm models were applied to investigate the adsorption mechanisms of IBF and CBZ by the NaOH pre-treated biochars produced at 600℃ (PB-600) and 800℃ (PB-800). In addition, the removal efficiencies of IBF and CBZ by PB-600 and PB-800 were compared under various conditions (adsorbent doses: 5-40 mg/L; 20-160 mg/L; temperature: 15-45℃; ionic strength: 0-0.5 M) to assess their feasibility as an alternative adsorbent for the removal of pharmaceuticals. Results and Discussion:PB-800 could more effectively remove CBZ and IBF than PB-600 because of its larger specific surface area (PB-600 = 408.70 m2/g; PB-800 = 472.92 m2/g), pore volume (PB-600 = 0.336 cm3/g; PB-800 = 0.658 cm3/g), and pore size (PB-600 = 4.63 nm; PB-800 = 6.25 nm). The Langmuir isotherm was more suitable for adsorption of IBF by PB-600 and the Freundlich isotherm was well fitted to the adsorption of CBZ by PB-600 and adsorption of CBZ and IBF by PB-800. The adsorption of CBZ by PB-600 and PB-800 was not affected by temperature while the removal efficiency of IBF was decreased with increasing the temperature due to the increased repulsive interaction between IBF and the biochars. Furthermore, the effects of the ionic strength on the adsorption of IBF were more pronounced than that of CBZ due to the differences in the surface charge properties. Conclusions:The higher pyrolysis temperature can improve the physicochemical properties of the NaOH pre-treated pine sawdust biochars associated with the removal of the pharmaceuticals (i.e., CBZ and IBF). Moreover, the adsorption mechanisms of CBZ and IBF by the biochars were strongly influenced by their specific surface area, pore volume and pore size.
Keywords