Symmetry (May 2024)
Brauer Analysis of Some Cayley and Nilpotent Graphs and Its Application in Quantum Entanglement Theory
Abstract
Cayley and nilpotent graphs arise from the interaction between graph theory and algebra and are used to visualize the structures of some algebraic objects as groups and commutative rings. On the other hand, Green and Schroll introduced Brauer graph algebras and Brauer configuration algebras to investigate the algebras of tame and wild representation types. An appropriated system of multisets (called a Brauer configuration) induces these algebras via a suitable bounded quiver (or bounded directed graph), and the combinatorial properties of such multisets describe corresponding indecomposable projective modules, the dimensions of the algebras and their centers. Undirected graphs are examples of Brauer configuration messages, and the description of the related data for their induced Brauer configuration algebras is said to be the Brauer analysis of the graph. This paper gives closed formulas for the dimensions of Brauer configuration algebras (and their centers) induced by Cayley and nilpotent graphs defined by some finite groups and finite commutative rings. These procedures allow us to give examples of Hamiltonian digraph constructions based on Cayley graphs. As an application, some quantum entangled states (e.g., Greenberger–Horne–Zeilinger and Dicke states) are described and analyzed as suitable Brauer messages.
Keywords