HardwareX (Sep 2024)

CARETestLung: A mechanical test lung with Configurable airway Resistance, lung Elastance, and breathing efforts

  • Wei Yang Tay,
  • Christopher Yew Shuen Ang,
  • Yeong Shiong Chiew,
  • J. Geoffrey Chase

Journal volume & issue
Vol. 19
p. e00579

Abstract

Read online

A mechanical test lung is a crucial tool in accurately simulating patient-specific physiological responses of patients undergoing mechanical ventilation (MV), which, in turn, offer clinicians insight into lung mechanics during MV. In particular, it can be used to facilitate better methods to identify optimal ventilator settings, modes for individual patients by providing a platform to experiment with different MV settings. This addresses the challenge of optimising MV settings caused by variability in pathological conditions and the progression of respiratory disease over time within patients. However, the accessibility and cost of versatile test lungs limit widespread adoption in clinical settings, underscoring the need for affordable alternatives. This paper presents detailed instructions for the design and construction of a replicable, cost-effective mechanical test lung. The design features 3 subsystems: 1) the lung compartment; 2) the airway; and 3) a spontaneous breathing system. A detailed tests series shows its ability to replicate clinically realistic lung elastance values ranging from 25 to 85 cmH2O/L and airway resistance values from 10 to 45 cmH2O·s/L. It can also simulate a range of clinically realistic spontaneous breathing patterns. These capabilities yield pressure and flow ventilation data comparable to certified clinical test lungs across diverse scenarios, as well as matching clinically observed behaviours and dynamics. This accessible and versatile test lung offers valuable opportunities for optimising MV settings and advancing patient care, as well as its use in developing a range of physiological models for model-based decision support.

Keywords